Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 146
Filter
1.
Acta Academiae Medicinae Sinicae ; (6): 290-297, 2023.
Article in Chinese | WPRIM | ID: wpr-981266

ABSTRACT

Although the development of novel drugs has significantly improved the survival of patients with multiple myeloma (MM) over the past decades,the lack of effective therapeutic options for relapsed and refractory MM results in poor prognosis.The chimeric antigen receptor (CAR) T-cell therapy has achieved considerable progress in relapsed and refractory MM.Nevertheless,this therapy still has limitations such as cytokine release syndrome,neurotoxicity,and off-target effects.Natural killer (NK) cells,as a critical component of the innate immune system,play an essential role in tumor immunosurveillance.Therefore,CAR-modified NK (CAR-NK) cells are put forward as a therapeutic option for MM.The available studies have suggested that multiple targets can be used as specific therapeutic targets for CAR-NK cell therapy and confirmed their antitumor effects in MM cell lines and animal models.This review summarizes the anti-tumor mechanisms,biological characteristics,and dysfunction of NK cells in the MM tumor microenvironment,as well as the basic and clinical research progress of CAR-NK cells in treating MM.


Subject(s)
Animals , Receptors, Chimeric Antigen/metabolism , Multiple Myeloma/metabolism , Killer Cells, Natural/metabolism , Immunotherapy, Adoptive/methods , Tumor Microenvironment
2.
Journal of Zhejiang University. Science. B ; (12): 387-396, 2023.
Article in English | WPRIM | ID: wpr-982379

ABSTRACT

Tumor recurrence is one of the major life-threatening complications after liver transplantation for liver cancer. In addition to the common mechanisms underlying tumor recurrence, another unavoidable problem is that the immunosuppressive therapeutic regimen after transplantation could promote tumor recurrence and metastasis. Transplant oncology is an emerging field that addresses oncological challenges in transplantation. In this context, a comprehensive therapeutic management approach is required to balance the anti-tumor treatment and immunosuppressive status of recipients. Double-negative T cells (DNTs) are a cluster of heterogeneous cells mainly consisting of two subsets stratified by T cell receptor (TCR) type. Among them, TCRαβ+ DNTs are considered to induce immune suppression in immune-mediated diseases, while TCRγδ+ DNTs are widely recognized as tumor killers. As a composite cell therapy, healthy donor-derived DNTs can be propagated to therapeutic numbers in vitro and applied for the treatment of several malignancies without impairing normal tissues or being rejected by the host. In this work, we summarized the biological characteristics and functions of DNTs in oncology, immunology, and transplantation. Based on the multiple roles of DNTs, we propose that a new balance could be achieved in liver transplant oncology using them as an off-the-shelf adoptive cell therapy (ACT).


Subject(s)
Humans , T-Lymphocytes , Immunotherapy, Adoptive , Neoplasm Recurrence, Local , Transplantation, Homologous , Cell- and Tissue-Based Therapy
3.
Journal of Experimental Hematology ; (6): 783-787, 2023.
Article in Chinese | WPRIM | ID: wpr-982130

ABSTRACT

OBJECTIVE@#To investigate the effect of hemoglobin (Hb) on the efficacy of chimeric antigen receptor T cell therapy (CAR-T) in patients with multiple myeloma (MM).@*METHODS@#From June 2017 to December 2020, 76 MM patients who received CAR-T therapy in the Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, with complete clinical data and evaluable efficacy, were selected as the research objects. According to the receiver operating characteristic (ROC) curve, the best cut-off value was obtained. The patients were divided into groups on the basis of Hb 105.5 g/L as the cut-off value. The age, sex, serum calcium, β2-microglobulin, serum creatinine, lactate dehydrogenase (LDH), and the influencing factors of CAR-T treatment efficacy in MM patients were analyzed.@*RESULTS@#Hb was an influencing factor of efficacy. Univariate analysis showed that Hb, LDH, and albumin affected the efficacy of CAR-T therapy. Multivariate analysis showed that Hb ( OR=1.039, 95% CI: 1.002-1.078) and LDH ( OR=1.014, 95% CI: 1.000-1.027) were the influencing factors for the efficacy of CAR-T therapy.@*CONCLUSION@#The efficacy of CAR-T therapy in MM patients with low Hb is poor, and Hb is a factor affecting the efficacy of CAR-T therapy.


Subject(s)
Humans , Multiple Myeloma/drug therapy , Receptors, Chimeric Antigen , Immunotherapy, Adoptive , Treatment Outcome , Hematologic Diseases
4.
Journal of Zhejiang University. Medical sciences ; (6): 267-278, 2023.
Article in English | WPRIM | ID: wpr-982044

ABSTRACT

NK cell immunotherapy is a promising antitumor therapeutic modality after the development of T cell immunotherapy. Structural modification of NK cells with biomaterials may provide a precise, efficient, and low-cost strategy to enhance NK cell immunotherapy. The biomaterial modification of NK cells can be divided into two strategies: surface engineering with biomaterials and intracellular modification. The surface engineering strategies include hydrophobic interaction of lipids, receptor-ligand interaction between membrane proteins, covalent binding to amino acid residues, click reaction and electrostatic interaction. The intracellular modification strategies are based on manipulation by nanotechnology using membranous materials from various sources of NK cells (such as exosome, vesicle and cytomembranes). Finally, the biomaterials-based strategies regulate the recruitment, recognition and cytotoxicity of NK cells in the solid tumor site in situ to boost the activity of NK cells in the tumor. This article reviews the recent research progress in enhancing NK cell therapy based on biomaterial modification, to provide a reference for further researches on engineering NK cell therapy with biomaterials.


Subject(s)
Humans , Biocompatible Materials/metabolism , Immunotherapy , Killer Cells, Natural/metabolism , Immunotherapy, Adoptive , Neoplasms/therapy
5.
Chinese Journal of Cellular and Molecular Immunology ; (12): 397-403, 2023.
Article in Chinese | WPRIM | ID: wpr-981879

ABSTRACT

Objective To investigate a convenient and quantitative solution to activation levels and functional characterization of CAR-T cells by inserting T cell activity-responsive promoter (TARP) nanoluciferase reporter gene system into a lentiviral plasmid containing the gene encoding the chimeric antigen receptor (CAR). Methods The recombinant plasmid was constructed by using whole gene synthesis and molecular cloning techniques. The lentivirus was packaged and was infected with human primary T lymphocytes. Flow cytometry was used to detected the positive rate of lentivirus-infected T cells. The functional characterization of CAR-T cells was identified by luciferase reporter gene system, Western blot, flow cytometry, and small animal live imaging techniques. Results The results of enzyme digestion identification and the plasmid sequencing showed that the recombinant plasmids were constructed, and flow cytometry displayed the normal preparation of CAR-T cells. This system could dynamically respond to the activation of CAR-T cells by luciferase reporter gene system. The functional assay in vitro confirmed that the system could reflect the exhaustion of CAR-T cells, and the small animal live imaging results demonstrated that the system can be used as a tracer of CAR-T cells in mice. Conclusion TARP nanoluciferase reporter gene system provides a more convenient, sensitive and quantitative method for evaluating CAR-T cells activation level, exhaustion phenotype and tracing.


Subject(s)
Humans , Animals , Mice , T-Lymphocytes , Cell Line, Tumor , Receptors, Chimeric Antigen/genetics , Promoter Regions, Genetic , Immunotherapy, Adoptive/methods
6.
Chinese Medical Journal ; (24): 269-279, 2023.
Article in English | WPRIM | ID: wpr-970072

ABSTRACT

Remarkable improvement relative to traditional approaches in the treatment of hematological malignancies by chimeric antigen receptor (CAR) T-cell therapy has promoted sequential approvals of eight commercial CAR T products within last 5 years. Although CAR T cells' productization is now rapidly boosting their extensive clinical application in real-world patients, the limitation of their clinical efficacy and related toxicities inspire further optimization of CAR structure and substantial development of innovative trials in various scenarios. Herein, we first summarized the current status and major progress in CAR T therapy for hematological malignancies, then described crucial factors which possibly compromise the clinical efficacies of CAR T cells, such as CAR T cell exhaustion and loss of antigen, and finally, we discussed the potential optimization strategies to tackle the challenges in the field of CAR T therapy.


Subject(s)
Humans , Receptors, Chimeric Antigen/therapeutic use , Immunotherapy, Adoptive , Hematologic Neoplasms/therapy , Treatment Outcome
7.
Chinese Medical Journal ; (24): 127-137, 2023.
Article in English | WPRIM | ID: wpr-970062

ABSTRACT

Adoptive therapeutic immune cells, such as chimeric antigen receptor (CAR)-T cells and natural killer cells, have established a new generation of precision medicine based on which dramatic breakthroughs have been achieved in intractable lymphoma treatments. Currently, well-explored approaches focus on autologous cells due to their low immunogenicity, but they are highly restricted by the high costs, time consumption of processing, and the insufficiency of primary cells in some patients. Induced pluripotent stem cells (iPSCs) are cell sources that can theoretically produce indefinite well-differentiated immune cells. Based on the above facts, it may be reasonable to combine the iPSC technology and the CAR design to produce a series of highly controllable and economical "live" drugs. Manufacturing hypoimmunogenic iPSCs by inactivation or over-expression at the genetic level and then arming the derived cells with CAR have emerged as a form of "off-the-shelf" strategy to eliminate tumor cells efficiently and safely in a broader range of patients. This review describes the reasonability, feasibility, superiority, and drawbacks of such approaches, summarizes the current practices and relevant research progress, and provides insights into the possible new paths for personalized cell-based therapies.


Subject(s)
Humans , Receptors, Chimeric Antigen/genetics , Induced Pluripotent Stem Cells , Killer Cells, Natural , Cell- and Tissue-Based Therapy , T-Lymphocytes , Immunotherapy, Adoptive , Neoplasms/genetics
8.
Chinese Journal of Oncology ; (12): 322-329, 2023.
Article in Chinese | WPRIM | ID: wpr-984725

ABSTRACT

Objective: To produce chimeric antigen receptor T cells (CAR-T) targeting human hepatocyte growth factor/c-Met (HGF/c-Met) protein and detect its cytotoxicity against non-small cell lung cancer (NSCLC) cells H1975 in vitro. Methods: The whole gene sequence of c-Met CAR containing c-Met single-chain fragment variable was synthesized and linked to lentiviral vector plasmid, plasmid electrophoresis was used to detect the correctness of target gene. HEK293 cells were transfected with plasmid and the concentrated solution of the virus particles was collected. c-Met CAR lentivirus was transfected into T cells to obtain second-generation c-Met CAR-T and the expression of CAR sequences was verified by reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) and western blot, and the positive rate and cell subtypes of c-Met CAR-T cells were detected by flow cytometry. The positive expression of c-Met protein in NSCLC cell line H1975 was verified by flow cytometry, and the negative expression of c-Met protein in ovarian cancer cell line A2780 was selected as the control. The cytotoxicity of c-Met CAR-T to H1975 was detected by lactate dehydrogenase (LDH) cytotoxicity assay at 1∶1, 5∶1, 10∶1 and 20∶1 of effector: target cell ratio (E∶T). Enzyme-linked immunosorbent assay (ELISA) was used to detect the release of cytokines such as TNF-α, IL-2 and IFN-γ from c-Met CAR-T co-cultured with H1975. Results: The size of band was consistent with that of designed c-Met CAR, suggesting that the c-Met CAR plasmid was successfully constructed. The results of gene sequencing were consistent with the original design sequence and lentivirus was successfully constructed. CAR molecules expression in T cells infected with lentivirus was detected by western blot and RT-qPCR, which showed c-Met CAR-T were successfully constructed. Flow cytometry results showed that the infection efficiency of c-Met CAR in T cells was over 38.4%, and the proportion of CD8(+) T cells was increased after lentivirus infection. The NSCLC cell line H1975 highly expressed c-Met while ovarian cancer cell line A2780 negatively expressed c-Met. LDH cytotoxicity assay indicated that the killing efficiency was positively correlated with the E∶T, and higher than that of control group, and the killing rate reached 51.12% when the E∶T was 20∶1. ELISA results showed that c-Met CAR-T cells released more IL-2, TNF-α and IFN-γ in target cell stimulation, but there was no statistical difference between c-Met CAR-T and T cells in the non-target group. Conclusions: Human NSCLC cell H1975 expresses high level of c-Met which can be used as a target for immunotherapy. CAR-T cells targeting c-Met have been successfully produced and have high killing effect on c-Met positive NSCLC cells in vitro.


Subject(s)
Humans , Female , Receptors, Chimeric Antigen/genetics , Carcinoma, Non-Small-Cell Lung , CD8-Positive T-Lymphocytes , Interleukin-2/pharmacology , Tumor Necrosis Factor-alpha , Cell Line, Tumor , HEK293 Cells , Lung Neoplasms , Ovarian Neoplasms , Immunotherapy, Adoptive
9.
Hematol., Transfus. Cell Ther. (Impr.) ; 45(2): 266-274, Apr.-June 2023. tab, ilus
Article in English | LILACS | ID: biblio-1448345

ABSTRACT

ABSTRACT Introduction Chimeric antigen receptor T (CAR-T) cell therapy is an emerging treatment option for relapsed/refractory multiple myeloma (RRMM) that is a multi-step process involving various stakeholders. Appropriate education on the practical logistics is therefore paramount to ensure treatment success. Methods A group of key opinion leaders met to explore the key elements of setting up and running a CAR-T center in Brazil. For each step in the CAR-T cell therapy process, the experts agreed on basic requirements, gave their key recommendations from practical experience, and considered any remaining unanswered questions. Results This paper presents best-practice recommendations and advice on how to overcome common challenges for each step in the CAR-T cell therapy process, with a focus on the current situation in Brazil. Key themes throughout the process are collaboration within the multidisciplinary team and with the referring physician, along with communication and education for patients and their caregivers. Conclusion We believe that the expert insights presented in this paper, in particular on optimal patient selection and timing of CAR-T cell therapy, will deepen understanding of the CAR-T process and aid implementation of this novel therapy for patients with RRMM in Brazil.


Subject(s)
Immunotherapy, Adoptive , Multiple Myeloma , B-Cell Maturation Antigen , Immunotherapy
10.
Rev. méd. Minas Gerais ; 32: 32210, 2022.
Article in English, Portuguese | LILACS | ID: biblio-1425697

ABSTRACT

As células CAR-T são linfócitos geneticamente modificados para reconhecerem um espectro amplo de antígenos de superfície celulares. Além disso, atacam células tumorais malignas, que expressam esses antígenos, por meio da ativação da coestimulação citoplasmática, secreção de citocinas, citólise de células tumorais e proliferação de células T. O objetivo desse estudo é abordar a imunoterapia com células CAR-T, a fim de explicar seu conceito, processo de fabricação e papel no tratamento de neoplasias hematológicas e tumores sólidos. Foi realizada uma revisão através do portal PubMed, utilizando como descritores: "car-t cell therapy" e "neoplasms", determinados com base nos "Descritores em Ciências da Saúde". Foram obtidos, inicialmente, 10 artigos, os quais foram lidos integralmente para a confecção dessa revisão. Além disso, foram adicionados 3 ensaios clínicos atualizados sobre o tema. Na terapia com células CAR-T, as células T são coletadas do paciente, geneticamente modificadas para incluir receptores de antígeno específicos e, posteriormente, expandidas em laboratórios e transfundidas de volta para o paciente. Assim, esses receptores podem reconhecer células tumorais que expressam um antígeno associado a um tumor. A terapia com células CAR-T é mais conhecida por seu papel no tratamento de malignidades hematológicas de células B, sendo a proteína CD19 o alvo antigênico mais bem estudado até o momento. Entretanto, estudos estão sendo feitos para verificar a eficácia desse tratamento, também, em tumores sólidos. Portanto, apesar de inicialmente ser indicada apenas para um grupo seleto de pessoas, essa terapia tem demonstrado grande potencial para atuar em um espectro maior de pacientes.


The CAR-T cells are lymphocytes genetically modified to recognize a broader spectrum of cell surface antigens. In addition, they attack malignant tumor cells, which express these antigens, by activating cytoplasmic co-stimulation, cytokine secretion, tumor cell cytolysis and T cell proliferation. The aim of this study is to address immunotherapy with CAR-T cells, in order to explain its concept, manufacturing process and role in the treatment of hematological neoplasms and solid tumors. This is a literature review conducted through the PubMed portal, that uses the terms "car-t cell therapy" and "neoplasms" as descriptors, determined based on the DeCS (Descritores em Ciências da Saúde). To prepare this review, initially 10 articles were found and read in full. In addition, 3 updated clinical trials on the subject were added. For CAR-T cell therapy, T cells are collected from the patient, genetically modified to include specific antigen receptors, and later expanded in laboratories and transfused back to the patient. Thus, these receptors can recognize tumor cells that express a tumor-associated antigen. CAR-T cell therapy is best known for its role in the treatment of B cell hematological malignancies, with the CD19 protein being the most studied antigenic target to date. However, studies are being conducted to verify the effectiveness of this treatment, also, in solid tumors. Therefore, despite being formulated only for a selected group of patients, this therapy has great potential to act on a broader spectrum of patients.


Subject(s)
Humans , Immunotherapy, Adoptive , Hematologic Neoplasms , Cellular Reprogramming , Cell- and Tissue-Based Therapy , Receptors, Antigen , Inducible T-Cell Co-Stimulator Ligand , Epithelial Cell Adhesion Molecule/therapeutic use , Immunotherapy/methods , Antigens/immunology , Neoplasms
11.
Frontiers of Medicine ; (4): 322-338, 2022.
Article in English | WPRIM | ID: wpr-939882

ABSTRACT

Immune-based therapies have experienced a pronounced breakthrough in the past decades as they acquired multiple US Food and Drug Administration (FDA) approvals for various indications. To date, six chimeric antigen receptor T cell (CAR-T) therapies have been permitted for the treatment of certain patients with relapsed/refractory hematologic malignancies. However, several clinical trials of solid tumor CAR-T therapies were prematurely terminated, or they reported life-threatening treatment-related damages to healthy tissues. The simultaneous expression of target antigens by healthy organs and tumor cells is partly responsible for such toxicities. Alongside targeting tumor-specific antigens, targeting the aberrantly glycosylated glycoforms of tumor-associated antigens can also minimize the off-tumor effects of CAR-T therapies. Tn, T, and sialyl-Tn antigens have been reported to be involved in tumor progression and metastasis, and their expression results from the dysregulation of a series of glycosyltransferases and the endoplasmic reticulum protein chaperone, Cosmc. Moreover, these glycoforms have been associated with various types of cancers, including prostate, breast, colon, gastric, and lung cancers. Here, we discuss how underglycosylated antigens emerge and then detail the latest advances in the development of CAR-T-based immunotherapies that target some of such antigens.


Subject(s)
Humans , Male , Antigens, Neoplasm/chemistry , Biomarkers, Tumor/metabolism , Glycosylation , Hematologic Neoplasms/drug therapy , Immunotherapy, Adoptive/methods , Neoplasm Recurrence, Local/metabolism , Receptors, Chimeric Antigen , T-Lymphocytes , United States
12.
Journal of Experimental Hematology ; (6): 718-725, 2022.
Article in Chinese | WPRIM | ID: wpr-939680

ABSTRACT

OBJECTIVE@#To observe the efficacy of chimeric antigen receptor T cell (CAR-T) in the treatment of children with refractory/recurrent B acute lymphocytic leukemia (B-ALL).@*METHODS@#Thirty-two patients with r/r B-ALL were treated by CAR-T, the recurrence and death respectively were the end point events to evaluate the efficacy and safety of CAR-T.@*RESULTS@#The median age of the patients was 7.5 (2-17.5) years old; 40 times CAR-T were received in all patients and the median number of CAR-T was 0.9×107/kg; efficacy evaluation showed that 2 cases died before the first evaluation. Thirty patients showed that 3, 6, and 9-moth RFS was (96.3±3.6)%, (81.4±8.6)% and (65.3±12.5)%, respectively, while 3, 6, and 9-month OS was all 100%, and 12, 24-month OS was (94.7±5.1)% and (76±12.8)%. BM blasts≥36% before reinfusion and ferritin peak≥2 500 ng/ml within two weeks of CAR-T cell reinfusion were associated with recurrence. Adverse reactions mainly included cytokine release syndrome (CRS) and CART-cell-related encephalopathy syndrome (CRES), CRS appeared in 26 patients within a week of CAR-T cell reinfusion. CRES reaction was detected in 12 patients. Eighteen patients received intravenous drip of tocilizumab, among them, 12 combined with glucocorticoid. CRS and CRES reactions were relieved within one week after treatment. Hormone dosage was related to the duration of remission in patients, and the cumulative dose of methylprednisolone≥8 mg/kg showed a poor prognosis.@*CONCLUSION@#CAR-T is a safe and effective treatment for r/r B-ALL, most CRS and CRES reactions are reversible. BM blasts ≥36% before reinfusion and cumulative dose of methylprednisolone ≥8 mg/kg after reinfusion both affect the therapeutic effect. Ferritin≥2 500 ng/ml within two weeks after reinfusion is related to disease recurrence and is an independent prognostic risk factor.


Subject(s)
Adolescent , Child , Child, Preschool , Humans , Antigens, CD19 , Chronic Disease , Ferritins , Immunotherapy, Adoptive , Methylprednisolone , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Receptors, Antigen, T-Cell , Receptors, Chimeric Antigen/metabolism , Recurrence , T-Lymphocytes
13.
Journal of Experimental Hematology ; (6): 466-475, 2022.
Article in Chinese | WPRIM | ID: wpr-928738

ABSTRACT

OBJECTIVE@#To investigate the toxicity management and efficacy evaluation of BCMA-chimeric antigen receptor T cells(CART) in the treatment of relapsed and refractory multiple myeloma (MM).@*METHODS@#The efficacy and adverse reactions of 21 patients with MM who received BCMA-CART treatment at the First Affiliated Hospital of Wenzhou Medical University from December 2017 to September 2020 were evaluated, and the efficacy assessment and survival analysis for high-risk patients and non-high-risk patients were evaluated.@*RESULTS@#After infusion of BCMA-CART cells in 21 MM patients, the number of effective cases was 17, of which the complete remission (sCR/CR) was 10, and the partial remission (VGPR/PR) was 7. The median OS time for all patients was 19.4 months, and the median PFS time was 7.9 months. The number of patients with extramedullary disease(EMD), high-risk genetics, and ISS stage Ⅲ were 5, 15 and 8, and the effective number was 3, 11 and 6, respectively. The treatment of 3 patients without high-risk factors was effective. The median OS and median PFS of patients with EMD were 14.2 and 2.5 months, respectively, which were shorter than those of patients without EMD (19.4 months and 8.9 months, respectively). The median OS and median PFS of patients with high-risk cytogenetic factors and ISS Ⅲ were not significantly different from those of non-high-risk patients. Cytokine release syndrane (CRS) occurred in 20 patients, of which 14 cases were Grade 1 CRS, while 6 were Grade 2, no CRS of Grade 3 or above occurred. IL-6 receptor inhibitors were used in 9 patients. All CRS were controlled effectively, and no patients had neurological toxicity.@*CONCLUSION@#BCMA-CART is a certain curative effect in the treatment of relapsed and refractory multiple myeloma, and the adverse reactions can be well controlled through close monitoring and timely treatment.


Subject(s)
Humans , B-Cell Maturation Antigen , Immunotherapy, Adoptive/adverse effects , Multiple Myeloma/therapy , Receptors, Chimeric Antigen , Remission Induction
14.
Chinese Journal of Hematology ; (12): 279-286, 2022.
Article in Chinese | WPRIM | ID: wpr-929636

ABSTRACT

Objective: To construct chimeric antigen receptor (CAR) T cells targeting CD52 (CD52 CAR-T) and validate the effect of CD52 CAR-T cells on CD52-positive leukemia. Methods: A second-generation CD52-targeting CAR bearing 4-1BB costimulatory domain was ligated into a lentiviral vector through molecular cloning. Lentivirus was prepared and packaged by 293 T cells with a four-plasmid system. Fluorescein was used to label cell surface antigens to evaluate the phenotype of CD52 CAR-T cells after infection. Flow cytometry and ELISA were used to evaluate the specific cytotoxicity of CD52 CAR-T cells to CD52-positive cell lines in vitro. Results: ①A pCDH-CD52scFv-CD8α-4-1BB-CD3ζ-GFP expressing plasmid was successfully constructed and used to transduce T cells expressing a novel CD52-targeting CAR. ②On day 6, CD52-positive T cells were almost killed by CD52-targeted CAR-T post lentivirus transduction [CD52 CAR-T (4.48 ± 4.99) %, vs Vector-T (56.58±19.8) %, P=0.011]. ③T cells transduced with the CAR targeting CD52 showed low levels of apoptosis and could be expanded long-term ex vivo. ④The CD52 CAR could promote T cell differentiation into central and effector memory T cells, whereas the proportion of T cells with a CD45RA(+) effector memory phenotype were reduced. ⑤CD52 CAR-T cells could specifically kill CD52-positive HuT78-19t cells but had no killing effect on CD52-negative MOLT4-19t cells. For CD52 CAR-T cells, the percentage of residual of HuT78-19t cells was (2.66±1.60) % at an the E:T ratio of 1∶1 for 24 h, while (56.66±5.74) % of MOLT4-19t cells survived (P<0.001) . ⑥The results of a degranulation experiment confirmed that HuT78-19t cells significantly activated CD52 CAR-T cells but not MOLT4-19t cells[ (57.34±11.25) % vs (13.06± 4.23) %, P<0.001]. ⑦CD52 CAR-T cells released more cytokines when co-cultured with HuT78-19t cells than that of vector-T cells [IFN-γ: (3706±226) pg/ml, P<0.001; TNF-α: (1732±560) pg/ml, P<0.01]. Conclusions: We successfully prepared CD52 CAR-T cells with anti-leukemia effects, which might provide the foundation for further immunotherapy.


Subject(s)
Humans , CD52 Antigen , Cell Line, Tumor , Immunotherapy, Adoptive/methods , Lentivirus/genetics , Leukemia , Receptors, Antigen, T-Cell , Receptors, Chimeric Antigen/genetics
15.
Chinese Journal of Hematology ; (12): 102-106, 2022.
Article in Chinese | WPRIM | ID: wpr-929540

ABSTRACT

Objective: To explore the development of a CAR-T cells targeting CLL-1 and verify its function. Methods: The expression levels of CLL-1 targets in cell lines and primary cells were detected by flow cytometry. A CLL-1 CAR vector was constructed, and the corresponding lentivirus was prepared. After infection and activation of T cells, CAR-T cells targeting CLL-1 were produced and their function was verified in vitro and in vivo. Results: CLL-1 was expressed in acute myeloid leukemia (AML) cell lines and primary AML cells. The transduction rate of the prepared CAR T cells was 77.82%. In AML cell lines and AML primary cells, CLL-1-targeting CAR-T cells significantly and specifically killed CLL-1-expressing cells. Compared to untransduced T cells, CAR-T cells killed target cells and secreted inflammatory cytokines, such as interleukin-6 and interferon-γ, at significantly higher levels (P<0.001) . In an in vivo human xenograft mouse model of AML, CLL-1 CAR-T cells also exhibited potent antileukemic activity and induced prolonged mouse survival compared with untransduced T cells [not reached vs 22 days (95%CI 19-24 days) , P=0.002]. Conclusion: CAR-T cells targeting CLL-1 have been successfully produced and have excellent functions.


Subject(s)
Animals , Humans , Mice , Cell Line, Tumor , Cytokines , Immunotherapy, Adoptive , Lectins, C-Type , Leukemia, Myeloid, Acute/metabolism , Receptors, Mitogen , T-Lymphocytes
16.
NOVA publ. cient ; 19(37): 11-24, jul.-dic. 2021. tab, graf
Article in Spanish | LILACS | ID: biblio-1360608

ABSTRACT

Resumen Una de las herramientas más novedosas en inmunoterapias adoptivas contra leucemias y tumores malignos es el uso del receptor de antígeno quimérico "CAR". El receptor CAR ha sido ampliamente utilizada en células T (células CAR-T) potenciando su eficacia en el reconocimiento y eliminación de tumores, obteniéndose a la fecha terapias basadas en esta tecnología. No obstante, las células CAR-T llegan a repercutir negativamente en la salud del paciente, presentando el síndrome neurológico de efecto inmune asociado a células (ICANS) y el síndrome de lanzamiento de citocinas (SLC). Como consecuencia, el paciente necesita ser hospitalizado durante la terapia. Además, el coste de manufactura y terapia es elevado, siendo una tecnología limitada a un sector muy bajo de la población. En este trabajo, mencionamos el empleo de una terapia emergente de células asesinas naturales (NK) con el receptor CAR (CAR-NK), que cuentan con muchas ventajas por encima de las células CAR-T. Las células CAR-NK conservan su capacidad citotóxica en contra de tumores gracias a su acción dependiente de receptores activadores e inhibidores, por lo que el receptor CAR, solo estimula sus habilidades y persistencia. Sumado a esto, el coste de una terapia de células CAR-NK podría resultar redituable debido a la capacidad de las células CAR-NK de eliminar múltiples células tumorales sin generar daño colateral en el paciente. Aquí analizamos las características de los múltiples receptores CAR y los fenotipos de células NK que han sido utilizados durante múltiples ensayos (NK-92, células NK de sangre cordal y periférica, y células NK iPSC).


Abstract One of the novel and effective devices against leukemia and solid tumors in adoptive immunotherapies is the use of the chimeric antigen receptor "CAR". CAR technology has been widely used in T-cells (CAR-T cells) empowering its efficacy on the identification and elimination of tumor cells, getting today certain drugs based on this technology. Nevertheless, CAR-T cells can have a negative impact on patient health, causing in many cases immune effector cell-associated neurotoxicity syndrome (ICANS) and cytokine release syndrome (CRS). As a consequence, the patient will have to be hospitalized for the duration of therapy. Moreover, the cost of manufacture and therapy is quite expensive, limiting its use to a low range of people. On the other hand, we analyze the advantages of Natural Killer cells with the CAR receptor (CAR-NK), which have many plusses over CAR-T cells. CAR-NK cells retain their cytotoxic abilities against tumor cells due their activator/ inhibitor receptors balance. Thus, the CAR receptor technology just increases their skills and persistence. Furthermore, CAR-NK therapy could be more profitable since CAR-NK can eliminate multiple tumor cells without generating collateral damage on patient health. Here, we discuss the characteristics of the multiples CAR receptors in general and the NK types cells that have been used in trials demonstrating their viable emerging therapy (NK-92, cord and peripheral blood NK cells, and iPSC-derived NK cells).


Subject(s)
Humans , Leukemia , Therapeutics , Immunotherapy, Adoptive , Cytokine Release Syndrome
17.
Rev. méd. Minas Gerais ; 31: 31209, 2021.
Article in Portuguese | LILACS | ID: biblio-1292752

ABSTRACT

Introdução: O tratamento da leucemia linfoblástica aguda (LLA) atualmente baseia-se em quimioterapia e/ou transplante de células tronco hematopoiéticas; entretanto, uma nova terapia vem se tornando promissora: a imunoterapia com células T modificadas geneticamente que expressam um receptor de antígeno quimérico (CAR-T) visando antígenos específicos presente em blastos de LLA, gerando resultados promissores em crianças e adultos com doença recidivada e refratária (r/r). Objetivo: Discorrer sobre a LLA e descrever a imunoterapia com CAR-T, como inovação terapêutica no tratamento da LLA de linhagem B. Método: Foi realizada uma revisão bibliográfica por meio de publicações indexadas nas bases de dados Scielo e Pubmed, utilizando os descritores: leucemia linfoblástica aguda de células B; células CAR-T; receptores de antígeno quimérico, recidivados/refratários; imunoterapia. Resultados: As altas taxas de remissão completa (42% até 100%) e parcial (28,5%) da LLA (r/r) tratadas com CAR-T, possibilitam um aumento considerável da sobrevida geral comparado a outros tratamentos convencionais. Efeitos desfavoráveis, tais como síndrome da liberação de citocinas (CRS) (0 até 90%) e neurotoxicidade (NT) (0 até 29%) podem ser vistos, sendo manejáveis, não prejudicando o desfecho do tratamento. Conclusão: A LLA é uma doença grave, de difícil tratamento e prognóstico reservado. A imunoterapia vêm se mostrando promissora à essa enfermidade, principalmente em casos de doença r/r se mostrado uma ferramenta poderosa que permite o foco específico de células malignas por meio de engenharia de células T


Introduction: The treatment of acute lymphoblastic leukemia (ALL) is currently based on chemotherapy and/or hematopoietic stem cell transplantation; however, a new therapy is becoming promising: immunotherapy with genetically modified T cells that express a chimeric antigen receptor (CAR-T) targeting specific antigens present on ALL blasts, reaching promising results in children and adults with relapsed and refractory disease (r/r). Objective: To discuss ALL and describe immunotherapy with CAR-T as a therapeutic innovation in the treatment of B-lineage ALL. Method: A literature review was carried out through publications indexed in the Scielo and Pubmed databases, using the following descriptors: B-cell acute lymphoblastic leukemia; CAR-T cells; chimeric antigen receptors, relapsed/refractory; immunotherapy. Results: The high rates of complete (42% to 100%) and partial remission (28.5%) of ALL (r/r) treated with CAR-T allows a considerable increase in overall survival compared to other conventional treatments. Unfavorable effects such as cytokine release syndrome (CRS) (0 to 90%) and neurotoxicity (NT) (0 to 29%) can be seen, being manageable, not impairing the treatment outcome. Conclusion: ALL is a serious disease, with a difficult treatment and poor prognosis. Immunotherapy has shown benefits for this disease, especially in cases of r/r ALL, showing itself to be a powerful tool that allows the specific focus of malignant cells through T cell engineering.


Subject(s)
Humans , Child , Adult , Leukemia/therapy , Receptors, Chimeric Antigen , Immunotherapy , Neprilysin , Immunotherapy, Adoptive , Hematopoietic Stem Cell Transplantation , Cytokine Release Syndrome
18.
Journal of Experimental Hematology ; (6): 1203-1208, 2021.
Article in Chinese | WPRIM | ID: wpr-888539

ABSTRACT

OBJECTIVE@#To investigate the relationship between the levels of ferritin, C-reactive protein (CRP), lactate dehydrogenase (LDH) and interleukin-6 (IL-6) in peripheral serum and cytokine release syndrome (CRS) in patients with relapse and/or refractory multiple myeloma (R/R MM) after receiving chimeric antigen receptor T cells (CAR-T) immunotherapy.@*METHODS@#Twenty-eight patients with R/R MM were treated with 1×10@*RESULTS@#Among the 28 patients, 27 cases (96.4%) developed CRS, 24 cases (85.7%) in 1-2 grade CRS and 3 cases (10.7%) in 3-5 grade. The severity grade of CRS of 27 patients was positively correlated with the peak values of ferritin, CRP, LDH, and IL-6 in peripheral blood (r@*CONCLUSION@#After receiving CAR-T cellular immunotherapy, the incidence of CRS in patients with R/R MM is higher, but most of them are in grade 1 or 2. The severity of CRS is positively correlated with the levels of ferritin, CRP, LDH and IL-6 in peripheral blood.


Subject(s)
Animals , Humans , Mice , Antigens, CD19 , Cytokine Release Syndrome , Immunotherapy, Adoptive , Multiple Myeloma/therapy , Neoplasm Recurrence, Local , Receptors, Chimeric Antigen
19.
Journal of Experimental Hematology ; (6): 648-652, 2021.
Article in Chinese | WPRIM | ID: wpr-880128

ABSTRACT

B-cell acute lymphoblastic leukemia (B-ALL) is a common malignant tumor in hematopoietic system. Although the remission rate of the patients with adult B-ALL is similar to those with childhood B-ALL, the rate of long-term disease-free survival (DFS) rate is significantly lower, once recurrence, the remission rate of routine chemotherapy is low and the prognosis is so poor. Based on the expression of tumor cell surface antigens(such as CD19, CD20 and CD22), the specific monoclonal antibodies, bispecific antibodies and chimeric antigen receptor T cells (CAR-T), and other targeted immunotherapy can greatly improve the efficacy of B-ALL patients, especially for patients with relapse and refractory. In this review, the progress of immunotherapy against B-ALL cell surface antigen is summarized briefly.


Subject(s)
Adult , Child , Humans , Antigens, CD19 , Antigens, Surface , B-Lymphocytes , Burkitt Lymphoma , Immunotherapy, Adoptive , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Receptors, Antigen, T-Cell
20.
Journal of Experimental Hematology ; (6): 288-292, 2021.
Article in Chinese | WPRIM | ID: wpr-880069

ABSTRACT

T lymphoid malignancy is a group of highly heterogeneous hematological tumors. Disease recurrence and resistance to therapy are the common causes of failed treatment. Traditional therapy is radiotherapy and chemotherapy, although it has achieved great success. However, many patients still failed to survive following the treatment. With the introduction of monoclonal antibodies, immunotherapy and cellular therapy into clinical practice, the outcome of hematologic malignancies has been significantly improved. In particular, chimeric antigen receptor T cells (CAR-T) showed high efficacy in treating B-cell lymphoma and acute B lymphocytic leukemia and surpassed any previous therapeutic strategies. However, this treatment seldom succeeded in treating T cell malignancies. In this review, the history of CAR-T cells treating T cell malignancies, and the clinical trials, adverse events of previously reported were summarized briefly.


Subject(s)
Humans , Immunotherapy , Immunotherapy, Adoptive , Receptors, Antigen, T-Cell , Receptors, Chimeric Antigen , T-Lymphocytes
SELECTION OF CITATIONS
SEARCH DETAIL